Extremely rapid acclimation of Escherichia coli to high temperature over a few generations of a fed-batch culture during slow warming
نویسندگان
چکیده
This study aimed to demonstrate that adequate slow heating rate allows two strains of Escherichia coli rapid acclimation to higher temperature than upper growth and survival limits known to be strain-dependent. A laboratory (K12-TG1) and an environmental (DPD3084) strain of E. coli were subjected to rapid (few seconds) or slow warming (1°C 12 h(-1)) in order to (re)evaluate upper survival and growth limits. The slow warming was applied from the ancestral temperature 37°C to total cell death 46-54°C: about 30 generations were propagated. Upper survival and growth limits for rapid warming (46°C) were lower than for slow warming (46-54°C). The thermal limit of survival for slow warming was higher for DPD3084 (50-54°C). Further experiments conducted on DPD3084, showed that mechanisms involved in this type of thermotolerance were abolished by a following cooling step to 37°C, which allowed to imply reversible mechanisms as acclimation ones. Acquisition of acclimation mechanisms was related to physical properties of the plasma membrane but was not inhibited by unavoidable appearance of aggregated proteins. In conclusion, E.coli could be rapidly acclimated within few generations over thermal limits described in the literature. Such a study led us to propose that rapid acclimation may give supplementary time to the species to acquire a stable adaptation through a random mutation.
منابع مشابه
Physiological and Morphological Changes of Recombinant E. coli During Over-Expression of Human Interferon-g in HCDC
The objective of this research was to investigate the influence of the over-expression of recombinant interferon-g during high cell density cultivation on cellular characteristics of recombinant E. coli. Batch and fed-batch culture techniques were employed to grow Escherichia coli BL21 for production of human gamma-interferon in pET expression system. Final cell densities in batch and fed-batch...
متن کاملMaximizing Production of Human Interferon-γ in HCDC of Recombinant E. coli
Tuning recombinant protein expression is an approach which can be successfully employed for increasing the yield of recombinant protein production in high cell density cultures. On the other hand, most of the previous results reported the optimization induction conditions during batch and continuous culture of recombinant E. coli, and consequently fed-batch culture have received less attention....
متن کاملمقایسه کمی تولید پروتئین نوترکیب انتهای کربوکسیل نوروتوکسین بوتولینوم A در کشتهای ناپیوسته و ناپیوسته خوراکدهیشده باکتری اشرشیا کلی
Background and purpose: The 50 KDa protein (50 µg) in carboxylic domain of the neurotoxin heavy chain (BoNT/A-Hc) recognizes surface receptors on target neurons and this fragment contains the principle protective antigenic determinants. Recently, this fragment has been used as a recombinant vaccine candidate for botulism. The study aimed to compare the evaluation of BoNT/A-Hc production in fed-...
متن کاملMaximizing Production of Human Interferon-γ in HCDC of Recombinant E. coli
Tuning recombinant protein expression is an approach which can be successfully employed for increasing the yield of recombinant protein production in high cell density cultures. On the other hand, most of the previous results reported the optimization induction conditions during batch and continuous culture of recombinant E. coli, and consequently fed-batch culture have received less attention....
متن کاملThe Over-Expression of Biologically Active Human Growth Hormone in a T5-Based System in Escherichia coli, Studying Temperature Effect
We studied the expression of human growth hormone (hGH) in E. coli under a bacteriophage T5-base promoter in a pQE30 expression vector. For an efficient expression of hGH cDNA, a number of codons at the hGH N-terminal coding region were altered based on the E. coli major codons. An over-expression of hGH in the bacteria, carrying the recombinant plasmids, was observed at 37°C in the presence of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2014